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In this paper a numerical algorithm, based on the decomposition technique, is
presented for solving a class of nonlinear boundary value problems. The method
is implemented for well-known examples, including Troesch’s and Bratu’s prob-
lems which have been extensively studied. The scheme is shown to be highly ac-
curate, and only a few terms are required to obtain accurate computable solutions.
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1. INTRODUCTION

The Adomian polynomial algorithm has been extensively used to solve linear ¢
nonlinear problems arising in many interesting applications (see, for example, [3, 4,
12, 13, 19]). The algorithm (a decomposition method) assumes a series solution fol
unknown quantity. It has been shown [10] that the series converges fast, and with or
few terms this series approximates the exact solution with a fairly reasonable error,
mally less than 1%. In this paper, we shall adapt the algorithm to the solution of bounc
value problems arising in the modeling of interesting applications. The idea here is to
tain the integral representation of the boundary value problem through the constructic
the underlying Green’s function. We will adapt the decomposition method to the intec
formulation

b
u(x)=/ g(x, s)F(u(s)) ds+ f (x) (1.2
a
and analyze the solution. In (1.1, F, and f are known functions.
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The balance of this paper is as follows. In Section 2, we give a brief description of
decomposition method. In Section 3, we will describe the general algorithm as it app
to the solution of boundary value problems. In Section 4, we adapt the algorithm for sc
examples of the boundary value problems. In particular, we will consider Troesch’s probl
[21] and Bratu’s problem [8]. A brief discussion of these problems will also be given
Section 4.

2. ANALYSIS

In this section we first describe the algorithm of the decomposition method as it app
to a general nonlinear equation of the form

u— N(u)=f, (2.1)

where N is a nonlinear operator on a Hilbert spadeand f is a known element oH.
We assume that for a giveha unigue solutiom of (2.1) exists.
The decomposition method assumes a series solutianden by

o0
U:ZUnZUo+U1+U2+"' (2.2)
n=0

and the nonlinear operatdt can be decomposed into

Nw =) A, (2.3)
n=0
where theA,’s are the Adomian polynomials dfig, . .., us given by

A—1dn N oo)\i~ =01 2.4
"= g iz:; Ui - n=0,1,.... (2.4)

Substituting equations (2.2) and (2.3) into the functional equation (2.1) yields

du—> A=t (2.5)
n=0 n=0

If the series in (2.5) is convergent, then (2.5) holds upon setting

Ug = f
Uy = Ag(Uo)

Uz = Ag(Uo, U1) 2.6)

uI"I = Anfl(u03 ulv B Unfl)

Thus, one can recursively determine every term of the sérjgs, u,. The convergence
of this series has been established (see [7]). The two hypotheses necessary for pri
convergence of the decomposition method as given in [7] are:
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Condition 1. The nonlinear functional equation (2.1) has a series sol}ifh, u, such
thatd r” o(1+ €)"|un| < 0o, wheree > 0 may be very small.

Condition 2. The nonlinear operatoN(u) can be developed in the seridyu) =
o ant”.

These hypotheses, for proving convergence, are generally satisfied in physical probl
To illustrate the scheme, let the nonlinear operd&igu) be a nonlinear function af,
sayg(u). Assume that the Taylor expansiongiiu) aroundug is

1
g(u) = g(Uo) + g (Ug)(u — ug) + 59(2)(Uo)(u —Up)?+ . (2.7)

Substituting the difference — up from Eqg. (2.2) into Eq. (2.7), we get

o 1 o 2
9(W) = g(Uo) + g~ (Uo) (Uy + Uz + -+ ) + 2, g7 (Uo) (Up + Uz + -+ )" -
After expanding, this results in

g(u) = g(Uo) + 9™ (Uo)(Ug + Uz + - - -)

1
+ Ega)(uo) (U2 + 2u3Uz + 2uU3 + U3 + 2Upug + US + - - -)

1
+ gg("‘)(uo) (u$ + 3uluy + 3uus + 3ugus + Ui+ ) + . (2.8)

Adomian polynomials are obtained by a reordering and rearranging of the terms give
Eq. (2.8). Indeed, to determine the Adomian polynomial, one needs to determine the c
of each term in Eq. (2.8), which actually depends on both the subscripts and the expor
of theuy’s. To be more specific, we define the order of the componPrib beml, and
u"uf to beml +nj. Then the Adomian polynomiad, depends omg with order 0,A;
depends upong andu; with order 1, etc. Therefore, rearranging the terms in the expansi
Eq. (2.8) according to the order, and assuming Mhat) is as given in Eq. (2.3), will give
A, as

Ao = g(Uo)
A; = urg? (uo)

2
Ay = ug® (ug) + 2*}9(2)(U0) (2.9)

u3
As = u3g® (Uo) + u12g® (Ug) + §}g<3)(uo)

Once theA, are determined by Eq. (2.9), one can recurrently determine the tgrofg¢he
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series from Eq. (2.6), and hence the solutioiit is easy to verify that whed (u) is g(u),
formula (2.4) yields the same result as in (2.9).
For a detailed description of the decomposition method, we refer the reader to [2—7]
Since we will form the integral representation of boundary value problems in Sectior
we describe the application of the decomposition method to an integral equation of the f

b
u(x) =/ g(x,s)Fu(s))ds+ f(x), (2.10)

whereg(x, s) is referred to as the kerndt, is a nonlinear function afi, and f (x) is a given
function.
AssumingF (u) is analytic (and thus satisfies Condition 2), we can write

Fu) =) Aduo, s, ..., Uy, (2.11)
k=0

whereA are the specially generated Adomian polynomials given by (2.4). We note that
expansiomg, A;, Ay, ...Iisvalidin general when the nonlinearify(u), admits a Taylor
expansion atlp (see [16]).

Substituting Egs. (2.2) and (2.11) into Eq. (2.10), we have

b
UO+U1+U2+"‘=/ gX,8)(Ao+ A1+ A + - - ) ds+ f(x).
a

If the series is convergent, then we can determine each term of the $éffesun
recursively:

uo = f(x),

b
ul=/ g(x, 8)Ag(Up) ds,

b
U, = / g(X, S)Al(UQ, ui) ds (212)

b
Un=/ g(X, s)An_1(Up, U1, ..., Un_1) ds,
a

The algorithm in (2.12) determines thgs and hence the solutiamcan determined by
Eq. (2.2). The decomposition method can be applied to solve problems in higher dimens
(see [6, 7]). We will specify how Conditions 1 and 2 are satisfied for the examples that
be presented in Section 4.

3. APPLYING THE DECOMPOSITION METHOD TO BOUNDARY VALUE PROBLEMS

In this section we consider boundary value problems of the form

—u” = AF(u)
(3.1)
u = a, ud =8,
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wherei > 0andthe nonlinear functida(u) is assumed to have a power series representati
in accordance with Condition 2.
The Green'’s function of (3.1) is well known (see [20, 23]) and is given by

s(1 — x), 0<s<Xx
= . 3.2
9(x.s) {x(l—s), x<s<l1 (3.2)
Problem (3.1) can then be represented in an integral form as
1
ux) = A/ g(x,9)Fu(s))ds+ (1 — x) x + xB. (3.3)
0

The nonlinear equation in (3.3) will be solved using the decomposition method ac
Section 2. Again, we assume a series solution for (3.3),

u= i ui, (3.4)
i=0

which is convergent if a condition like Condition 1 is met. The nonlinear fundtiam) is
i=0

where A; are the Adomian polynomials constructed in the way explained in Eq. (2.9).
F (u) has a Taylor expansion ag,

F® (uo)
3!

F”(uo)

o U—up)’+--

(u— Uo)2 +

F(u) = F(uo) + F'(up)(u — up) +

with u — up=u; + Uz + - - -, then the Adomian polynomial8,, A;, Ay, ... are given by

Ao = F(Uo),

A; = usF'(uo),

Az = UTF"(Uo) /2! + UzF' (o),

Az = UzF’(Ug) + 2u1UzF" (Ug)/2! + U3F ® (uo) /3!,

As = UsF’(Uo) + (2uqus + U3) F"(Ug) /2! + 3uZuF @ (ug) /3! + uiF“ (ug) /4,

As we noted earlier, the expansioAs, Ay, ... are valid in general whef (u) admits a
Taylor expansion ato.
It follows from the series solution and Eq. (3.3) that

00 1 o]
u(x):Zui :k/ g(x,s)ZAids—i—(l—x)a—irx,B
0

i=0 i=0

o 1
=AZ/ g(x, S)A ds+ (1 — X)a + XB. (3.6)
i=0 /0
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Equating each term yields

Uo= (1 —X)a + X8,

1
U, = A/ g(x,s)Apds
. 0 3.7)

1
Uny1 = k/ g(x,s)Ands.
0

Since all thay;’s are known, the solution = ug + u; + uy + - - - to Eq. (3.3) is determined.

4. EXAMPLES

In this section we apply the algorithm described in the previous section to some exam
of boundary value problems.

ExampLE 1 (Troesch’s problem). Inthis example we consider the boundary value pre
lem, Troesch'’s problem,

u” = A sinhau, 0<x<1 (4.1)

with the boundary conditiong(0) =0, u(1) =1.

Troesch’s problem was described and solved by Weibel [22]. It arises from a syster
nonlinear ordinary differential equations which occur in an investigation of the confinem
of aplasma column by radiation pressure. The problem has been studied extensively. Trc
found its numerical solution by the shooting method (see [21]). The closed form solut
to this problem in terms of the Jacobian elliptic function has been given in [18] as

_ 2 11O e
u(x)_)LS|nh { 5 sc(kx|1 4u (O))}, 4.2)

whereu(0), the derivative ofi at 0, is given by the expressiar0) = 2(1 — m)¥/2, with m
being the solution of the transcendental equation

sinh(%)

A= mywe =S 1. (4.3)

where s¢x | m) is the Jacobi elliptic functioh(see, for example, [1, 14]). From (4.2), it was
noted in [18] that a pole af(t) occurs at a pole of $&x | 1 — %UZ(O)). It was also noted in

[18] that the pole occurs at
1 16
XA — n(> (4.4)

3The Jacobi elliptic function & | m) is defined by s¢.|m) = %’ whereg¢, A, andm are related by the
integral

A_flp do
CJ, (A—msirg)r2’

It also has an equivalent definition given in terms of a lattice.
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Here we will show how to apply the decomposition method to solve this problem. \
will present the solution for & A < 1. Itis for these values dfs that the method converges.
For A > 1, it follows from (4.4) that the pole of the exact solutioft), (i.e., the pole of
saAx|1— %UZ(O))) occurs within the interval (0, 1). Thus far> 1, Conditions 1 and 2 for
the convergence of the decomposition method stated in Section 2 will be violated. Ind
the nonlinearity sinti.u) will not be analytic.

We first write the integral equation to this boundary value problem following Eqg. (3.3

X 1
uix) =1 - x)/ —sA sinh(Au) ds+ x/ —(1—s)Asinh(Au)yds+x. (4.5)
0 X

Let
Up = X.

We expand sinti.u) arounduo,

5
sinh(Au) = sinh(Aug) 4+ A cosh(Aug) (U — Up) + %W(u — Ug)?
3 4 i
A7 COSMAUo) COZ?AUO) (u—up)®+ A7 SN o) Slrl::(wO) U—ug)*+---, (4.6)

and also in terms of the Adomian polynomials as
sinh(uu) = Ag+ Ar+ Ao+ Ag+ A+ -

Observing thati — ug=u; + Uz + uz + - - -, we obtain the Adomian polynomials with the
first six listed below:

Ao = sinh(AUo),
A; = AUjp cOSh(Aug),

1 .

A, = AUy coshiug) + ékzuf sinh(Auo),
. 1

Az = Augz coshiug) + A2uquy sinh(Aug) + §A3u§ cosh(xup),

2 ; 1,22 132
A4 = Aug cosh(AUg) + A“Uzug Sinh(Aug) + Ek u5 sinh(Aug) + EA uzUz cosh(iug)

1 44
+ EA u; sinh(Aup),
. 1

As = AUs coSHAUg) 4+ A2(U1Ua + UpUa) Sinh(AUg) + §A3(u§u3 + uyU3) cosh(Auo)

1
+ §A5u§ cosh(AUo),

Continuing this method, we can filh, Az, etc. These expressions, along with Eq. (4.5)
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yield the series solution of Troesch’s problem,
ue) =y Uk(X), 4.7)
k=0

whereug(x) are given by the iteration scheme
Up = X,
X 1
U1 (X) = (1 — x)/ —sAAcds+ x/ —(1-9s)AAds,
0 X

fork=1,2,3,....
We used the computer algebra system, Maple V, to obtain the first six iterationgva
list the first three terms:

Up = X,
sinh(Ax) — x sinh(})
up = )
A
1
Up = —ﬁ[—k cosh(Ax) sinh(Ax) + 4Ax sinh(1) cosh(Ax) — 8 sinh(A) sinh(Ax)

— 3ix sinh(A)cosh) + 8x costf(r) — 8x],

The approximation is carried out for Troesch’s problem witk-0.5 andi =1 at
x=0.1, 0.2,..., and 10. Tables | and Il exhibit the results of the approximation usin
only six terms in Eq. (4.7) for =0.5 and 1. These tables also give the value of the exa
solutions as given in the closed form (4.2). In (4.2), for a givewe use (4.3) to determine
m and the expressioin(0) = 2(1 — m)*/? to determiney(0). The last column of the table
lists the error.

The errors in Table Il are less than 1.3%. The decomposition method is immediat:
apply and yields a reasonable approximation to the solution when 8 1 with only

TABLE |
Decomposition Method Approximation for u” = A sinh Au (A = 0.5),
u©0)=0u(l)=1

X Exact solution Numerical solution Error
0.1 0.0951769020 0.0959383534 0.0007614514
0.2 0.1906338691 0.1921180592 0.0014841901
0.3 0.2866534030 0.2887803297 0.0021269267
0.4 0.3835229288 0.3861687095 0.0026457807
0.5 0.4815373854 0.4845302901 0.0029929047
0.6 0.5810019749 0.5841169798 0.0031150049
0.7 0.6822351326 0.6851868451 0.0029517125
0.8 0.7855717867 0.7880055691 0.0024337824
0.9 0.8913669875 0.8928480234 0.0014810369
1.0 0.9999999999 0.9999999988 0.0000000011
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TABLE Il
Decomposition Method Approximation for u” = X sinh Au (A =1),
u0)=0, u(1)=1

X Exact solution Numerical solution Error
0.1 0.0817969966 0.084248760 0.0024517634
0.2 0.1645308709 0.169430700 0.0048998291
0.3 0.2491673608 0.256414500 0.0072471392
0.4 0.3367322092 0.346085720 0.0093535108
0.5 0.4283471610 0.439401985 0.0110548241
0.6 0.5252740296 0.537365700 0.0120916704
0.7 0.6289711434 0.641083800 0.0121126566
0.8 0.7411683782 0.751788000 0.0106196218
0.9 0.8639700206 0.870908700 0.0069386794
1.0 1.0000000020 0.999998200 0.0000018020

six terms of the series, which are easy to compute using a computer algebra systen
example, Maple V). Fok > 1, we already noted that the decomposition method does r
yield a good approximation because the exact solution has a pole within the interval
0, 1).

Also, the graphs of the exact solution (solid curve) and the solution obtained by
decomposition method (dotted curve) are presented in Figs. 1 and 2.

ExAMPLE 2 (Bratu’s problem). We consider the boundary value problem
—u" = re" (4.8)

with the boundary conditiong(0) =0, u(1) =0.

0.8
0.6
0.4

0.2+

T T T T

0 0.2 04 , 06 0.8 1

FIG. 1. Troesch's problem: decomposition method versus analytic solutien)(5).
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0.6
0.41

0.2+

0 0.2 0.4 ‘ 0.6 0.8 1

FIG. 2. Troesch’s problem: decomposition method versus analytic solgtienl).

This is referred to in the literature [8, 15] as Bratu’s problem. In higher dimensic
Eq. (4.8) models a combustion problem in a slab. It was noted in [9] that the function

B 0.5(x — 0.5)¢
ux) = -2 Iog[cosf(mﬂ (4.9)

is a solution to (4.8), providedl is the solution of = +/2x cosh@/4). This equation has
two, one, or no solution wheh < A¢, A =Ac, A > Ac, Where the critical valug. satisfies
the equation % +/21 sinh(%). Numerical solutions of this problem were obtained by
shooting method (see [9, 17]).

Problem (4.8) can be represented in an integral form as in Eq. (3.3),

1
u(x) = A/ g(x, s)e'ds,
0
whereg(X, S) is the Green’s function given in (3.2). According to the analysis in Section

the solutionu(x) is represented by the series as in (3.4) wigh=0.
The nonlinearitye" may be expanded using Eq. (3.5),

o0
e“:ZAi =At+tA+A+--.
i=0
From the Taylor series @ atug (which is 0 in this example)

1 1
el=1+u+—ui+=ud+-.-,

2! 3!
we can find
Ap=1,
A; = upe',
1 2
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13
Az = Uz + UjUz + Qul’

1, 1, 1,
A4 = Ug + Uguz + Eu2+§ulu2+ﬂu1’

Substitution of A; (i =0,1,2,...) into Eq. (3.7) yields the values afy, uy, ...,
Unyi, - ... Then the solutioru(x) =ug+u; + Uz + --- can be determined by Eq. (3.6).
Using the computer algebra system Maple V, we can obtain the first several terms. We
only the first three terms:

1, 1
Ui = ——AX" 4+ —AX,

2 2
1 1 1
Up = —A2x* — =23 + —2a%x,
2= 24 127X T
1 1 1 1 1
Us = ——A3x8 4+ —a3x5 — a3 — — 334+ ——a3x,
3= 180" X "0 96 124" T 160

We shall consider, for example, the case 1. In this case, problem (4.8) has two locally
unique solutionsi; andu, with uj (0) ~ 0.549 andu;(0) ~ 10.909 (see [9]). The solution
of the decomposition method given by + u; + U, + Uz + - - - converges to the solution
u3(0) ~ 0.549, and not to the solutiaum,(0) ~ 10.909

In Table 11l we compare the exact solution derived from Eq. (4.9) with the numerical
lution obtained by the decomposition method using only four termes=e0.1, 0.2, ..., 1.0
forr=1.

We observe that the error is less than 0.31%.

The accuracy of the approximation is also reflected in Fig. 3, in which the solid cul
represents the analytic solution, while the dotted curve is the approximation solution.
can observe the almost perfect match of these two solutions.

TABLE Il
Decomposition Method Approximation for u” = Ae* (A = 1),
u(0)=u(1)=0
X Exact solution Numerical solution Error
0.1 0.0498467900 0.0471616875 0.0026851025
0.2 0.0891899350 0.0871680000 0.0020219350
0.3 0.1176090956 0.1177614375 0.0001523419
0.4 0.1347902526 0.1369920000 0.0022017474
0.5 0.1405392142 0.1435546875 0.0030154733
0.6 0.1347902526 0.1369920000 0.0022017474
0.7 0.1176090956 0.1177614375 0.0001523419
0.8 0.0891899350 0.0871680000 0.0020219350
0.9 0.0498467900 0.0471616875 0.0026851025
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0.024

0 0.2 04 . 06 08 1

FIG. 3. Bratu’s problem: decomposition method versus analytic solutiea1).

For A <1, the result with only four terms is even better than 0.3%a/A&pproaches the
critical valuei, the error becomes larger, and the convergence becomes slower as st
in the case of. =2 below. This is due to the fact that the decomposition method yiel
solutions that converge to one of the solutions of problem (4.8). As we noted earlier, in
case oft = 1, the solution converges to the solution with the initial conditip(®) ~ 0.549.

In summary, the decomposition method with only four terms seems to give a very reason
approximation, and the terms can be easily computed using a computer algebra system
Maple V.

Table IV and Fig. 4 show the analytic and the the decomposition method solutic
obtained by the decomposition method foe 2. We observe that the error is about 1%,
and Fig. 4 shows that the discrepancy between the analytic and the approximate sol
starts to aggravate.

In this paper we presented the decomposition method as an alternate method
shooting method to solve two important boundary value problems. In both problems,

TABLE IV
Decomposition Method Approximation for u” = Ae" (A = 2),
u(0)=u(1)=0
X Exact solution Numerical solution Error
0.1 0.0991935000 0.1144107440 0.0152172440
0.2 0.1917440000 0.2064191156 0.0146751156
0.3 0.2679915000 0.2738793116 0.0058878116
0.4 0.3183360000 0.3150893646 0.0032466354
0.5 0.3359375000 0.3289524214 0.0069850786
0.6 0.3183360000 0.3150893646 0.0032466354
0.7 0.2679915000 0.2738793116 0.0058878116
0.8 0.1917440000 0.2064191156 0.0146751156

0.9 0.0991935000 0.1144107440 0.0152172440
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0.321 e -
0.3 :
0.281
0.261
0.243
0.223
0.29
0.181
0.161
0.147
0.121
0.14
0.081
0.061
0.041
0.021

0 0.2 0.4 N} 0.6 0.8 1

FIG. 4. Bratu’s problem: decomposition method versus analytic soluticaZ).

method yields accurate computable solutions with good approximation using only a

te

N

rms, provided that the parametesatisfies O< A < 1.
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